
 

 

 

I. INTRODUCTION 

 
Abstract— We propose a method employing the pseudo-

hyperbolic functions, Hermite polynomials and the related 
generalizations to use the connected operational techniques, to 
find general solutions for extended forms of the d’Alembert 
and the Fourier heat equations.   

 
Keywords— Pseudo-hyperbolic functions, Hermite Polynomials, 

Generating Functions, Heat equations.  

N a previous paper [1], Ricci has developed a systematic 
and comprehensive treatment of the pseudo-hyperbolic 
functions of the type: 
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In the same paper, it has also been proved that the use of the 
roots of unity allows to cast the thj  order pseudo-hyperbolic 
function in the form: 
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This fairly general conclusion does not hold for pseudo-
hyperbolic functions and for the associated pseudo-
trigonometric forms only, but it can be extended to a large 
body of special polynomials and special functions [2,3,4]. For 
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instance, we can immediately get the following statements for 
the Hermite Kampé de Feriét polynomials [5] of second order  
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and for the cylindrical Bessel functions of the first kind 
[6,7,8]: 
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We can use these relations to explore the possibility of 
extending the above considerations and the results contained in 
the reference [1] to the study of partial differential equations of 
the type: 
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where: 
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with ,r m ∈ and relatively primes, h ∈  and ,x t  in general 
complex variables. 
The equation (8) reduces to the d’Alembert equation when: 

 
1m =  and 2r = ,  

 
while for: 
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2m =  and 1r = , 

  
we recover the Fourier heat equation. 
In the following we will use the results showed above and the 
operational methods related to the Hermite polynomials [9,10], 
to obtain general solutions of the partial differential equation 
stated in the relation (8).  
 

II. SOLUTIONS OF GENERALIZED HEAT EQUATIONS 
In the previous section we have presented some results 

related to the pseudo-hyperbolic functions; we can start to 
write a general solution of the equation (8) for the case 1m =  
and  r a positive integer. Let 1r = , we can formally rewrite the 
equation as: 
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after with 
^
O  the derivative respect to x; we can therefore treat 

this operator as a constant and write the solution in analogy 
with the first order ordinary differential equation, that is: 
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Now, by using the considerations stated in the previous section 
and the results showed in equations (1-3), we can write: 
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which provides the most general solution of equation (8) for 

1m =  and 1r ≥ . It is worth noting that for 1m =  and 2r = , 
we obtain the classical d’Alembert solution of the wave 
propagations. 
 

Before going further, it could be useful to make the 
discussion more complete related to the two-variable  Hermite 
polynomials, defined by: 
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which they are linked to the ordinary case, by: 

 
1, ( )
2n nH x He x − = 

 
. (13) 

 
It is well-known that, the generating function [10,11] reads: 
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Moreover, it is also evident that: 
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From the above relations, a fairly straightforward conclusion is 
the proof that the generalized Hermite polynomials of two 
variables satisfies the heat equation: 
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The proof is just a consequence of the structure of the 

generating function itself. By keeping, indeed the derivatives 
of both sides of (14) with respect to t and then equating the t-
like powers, we find: 
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for which the heat equation follows. This statement allows a 
further important result, indeed by regarding it as an ordinary 
first order equation in the variable y and by treating the 
differential operators as an ordinary number, we can write the 
polynomials ( , )nH x y  in terms of the following operational 
definition: 
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Let to return to the heat equation, states in relation (8) and 
looking for the general solution when 2m =  and 1r = . By 
using the same formalism, we have: 
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By following the same procedure of the previous case, we can 
immediately write: 
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We note that the Hermite polynomials are an examples of 
quasi-monomial [10], in fact the polynomials ( , )nH x y  have 
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been shown as to be quasi-monomial under the action of the 
operators: 
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The considerations presented in a previous paper suggest that, 
by using the concepts and the related formalism of the 
monomiality principle, we can introduce or “define” families 
of isospectral problems [6,10,12] by exploiting the 
correspondence: 
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We can therefore use the a family of polynomials as a basis 

to introduce “new” functions with eigenvalues corresponding 
to the ordinary case. The most useful example is provided by a 
p-based Bessel function [10], defined as: 
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In the present case, we can write the function in the equation 
(21) in the Hermite-based, so that: 
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if the ( )g x is specified by the polynomial expansion: 
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Then, we can finally state the general solution of the heat 
equation when 2m =  and 1r = ; we have, from equation (21): 
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It is well-known that another form of solution of the ordinary 
heat equation is provided by the Gauss transform, that is: 
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which have sense only if the integral converges. 
By combining these last remarks (eq.s (26) and (27)) we can 

easily cast the solution of the equation (8) for 2m =  and 1r ≥  
in the form: 
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and, if the integral in equation (27) converges, we can also 
write: 
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By noting that, if the function ( )g x  is a Gaussian, then 
following identity is true: 
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known as the Glashier identity [11]. We can use the previous 
relations to state the solution of the equation (8) when 2m =  
and 1r ≥ . In fact, by noting that in the Glashier identity α  
can also be negative, provided that: 
 

1| |
4

α
β

< ,  

 
we can cast the identity in equation (29) as: 
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In this section we have seen how the use of the relations stated 
in reference [1] allow us to provide the general solution of the 
equations of the type: 
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when 2m =  and 1r ≥ . To explore the case 2m > , 1r >  it is 
necessary to make further considerations and to present more 
results on the theory of Hermite-based functions [10]. In the 
next sections we will deeply discuss these issues. 
 

III. GENERALIZED HERMITE POLYNOMIALS AND RELATED 
APPLICATIONS TO THE HEAT EQUATIONS 

In the previous sections we have introduced the two-variable 
Hermite polynomials ( , )nH x y . More in general the above 
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Hermite polynomials can be derive, as a particular case, from 
the two-variable Hermite polynomials of the type ( ) ( , )m

nH x y .  
We will call Hermite Kampé de Feriét  polynomials [5,9] of 

thm -order, m ∈ , the polynomials defined by the formula: 
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We can immediately note that the polynomials ( ) ( , )m

nH x y  
satisfy the following partial differential equation: 
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It is evident to observe the similarity with the equation (16) 
involving the two-variable Hermite polynomials of second 
order. To prove the above relation is easy to note that the 
generating function of the Hermite polynomials of the type 

( ) ( , )m
nH x y  reads: 
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By differentiating with respect to y, we have: 
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and after manipulating the l.h.s. of the above equation and by 
equating the like t-powers, we can immediately write: 
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Otherwise, by deriving m-times with respect to x in the 
equation (35), we have: 
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and then by comparing the relation (38) and the (37) we 
immediately obtain the partial differential equation (34). 
The result stated above, allows us to derive a similar 
operational definition for the Hermite polynomials ( ) ( , )m

nH x y  
as in the case of the two-variable Hermite Kampé de Feriét 
polynomials (see eq. (19)).  
We note in fact that for 0y =  in the equation (33), we have: 
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By considering the equation in (34) an ordinary differential 
equation in the variable y, we can immediately conclude that, 
since is a linear first order, the solution writes: 
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or, in more explicit terms: 
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By following the same considerations done in previous 

section, in particular related to the function ( )g x , it is 

therefore immediately to specify it in terms of the thm -order 
Hermite polynomials to set: 

  

[ ] ( )
( )

0
( ) ( , ) ( , )

m

m

y
mx

n nH
n

e g x g x y a H x y
∂  +∞ ∂ 

=

= = ∑ , (42) 

 
where the function ( ) ( , )mH

g x y  denotes the thm -order Hermite-

based function of  ( )g x . 
Finally, the solution of the equation (8), for the case 2m > , 

1r > , can be written in the following terms: 
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which completes the purpose of the paper. 
 

IV. FURTHER REMARKS 
 
Before to conclude we can extended the obtained results and 
go further in the analysis by making use of the previous 
considerations and of the properties of the generalized Hermite 
polynomials. 
We remind the following property of the generalized Hermite 
polynomials which have played within the present context a 
non secondary role. We start to note that, the two-variable 
Hermite Kampé de Feriét polynomials satisfy the following 
relation: 
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since for any analytic function ( , )f x y  the following relations 
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Then, from equation (19), we can immediately write: 
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and, likewise for the thm -order Hermite polynomials of the 
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nH x y , we can state: 
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where the further generalization of the Hermite polynomials 
has the following explicit forms [5,9]: 
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By remembering that the two-variable Hermite polynomials 

( , )nH x y  are linked to the ordinary Hermite polynomials by 
the relations stated in equation (13), and by supposing that the 
function ( )g x  can be cast in the form: 
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we can write the solution of the equation (8) in the case 1r =  
and m generic in the following form: 
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Before the ending the paper, we consider interesting to make 
the following concluding comments.  
The generalized Hermite polynomials of the type  

( , ) ( , , )m p
nH x y z , in one of their special case, satisfy the 

following partial differential equation: 
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where: 
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Then, the solution of analogous equations of the general 
equation (8) can be therefore expressed in terms of the 
Hermite-based functions related to the polynomials of the type 

(2,3) ( , , )nH x y z . 
In a forthcoming paper we will discuss deeply these 

arguments related to generalized Hermite-based functions in 
the context of the further extended forms of the d’Alembert 
and of the Fourier heat equations. 
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